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Abstract

Columbia is a 10,240-processor supercluster consisting of 20 Altix nodes with 512 processors each, and
currently ranked as one of the fastest computers in the world. In this paper, we investigate its suitability
as a capability computing platform for aeronautics applications. We present the performance charac-
teristics of Columbia obtained on up to eight computing nodes interconnected via the InfiniBand and/or
NUMAlink4 communication fabrics. To perform the assessment, we used a subset of the NAS Parallel
Benchmarks, including the multi-zone versions, and three computational fluid dynamics applications of
interest to NASA. Our results show that the system holds promise for multinode application scaling to at
least 4096 processors.

Keywords: SGI Altix, multi-level parallelism, NAS Parallel Benchmarks, multi-block overset grids, com-
putational fluid dynamics

I. Introduction

DURING the summer of 2004, NASA acquired and installed Columbia, a 10,240-processor SGI Altix supercluster
at its Ames Research Center. It consists of 20 nodes, each of which has 512 Intel Itanium2 processors that

share 1TB of main memory using SGI’s NUMAlink technology. The 20 nodes are interconnected with InfiniBand10

as well as 10-gigabit Ethernet. In addition, four of the nodes are connected with NUMAlink4, providing a shared-
memory capability computing platform of 2048 CPUs and 4TB of memory. In October 2004, the full Columbia system
achieved 51.9 Tflop/s on the Linpack benchmark, passing the Earth Simulator and placing it second on the November
2004 Top500 list.21

In this paper, we present an assessment of the suitability of Columbia as a capability computing platform for aero-
nautics applications. In particular, we investigate computations employing up to 4096 processors, both on the 4-node
shared memory portion as well as on InfiniBand-connected subclusters. We also evaluate the available programming
approaches for their effect on code performance. To perform the assessment, we used the aeronautics-based NAS
Parallel Benchmarks (NPB) and state-of-the-art computational fluid dynamics (CFD) codes, both compressible and
incompressible multi-block overset grid Euler/Navier-Stokes applications.1, 7, 13
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II. The Columbia Supercluster

Introduced in early 2003, the SGI Altix 3000 systems are an adaptation of the Origin 3000, which use SGI’s NU-
MAflex global shared-memory architecture. Such systems allow access to all data directly and efficiently, without
having to move them through I/O or networking bottlenecks. The NUMAflex design enables the processor, mem-
ory, I/O, interconnect, graphics, and storage to be packaged into modular components, called “bricks.” The primary
difference between the Altix and the Origin systems is the C-Brick, used for the processor and memory. This com-
putational building block for the Altix 3700 consists of four Intel Itanium2 processors, 8GB of local memory, and
a two-controller ASIC called the Scalable Hub (SHUB). Each C-Brick shares a peak bandwidth of 3.2 GB/s via the
NUMAlink interconnection. Each SHUB interfaces to two CPUs, along with memory, I/O devices, and other SHUBs.
The Altix cache-coherency protocol is implemented in the SHUB, which integrates both the snooping operations of
the Itanium2 and the directory-based scheme used across the NUMAlink interconnection fabric. A load/store cache
miss causes the data to be communicated via the SHUB at a cache-line granularity and automatically replicated in the
local cache.

The predominant CPU on Columbia is an implementation of the 64-bit Itanium2 architecture, operating at 1.5 GHz,
and is capable of issuing two multiply-adds per cycle for a peak performance of 6.0 Gflop/s. The memory hierarchy
consists of 128 floating-point registers and three on-chip data caches (32KB L1, 256KB L2, and 6MB L3). The
Itanium2 cannot store floating-point data in L1, making register loads and spills a potential source of bottlenecks;
however, a relatively large register set helps mitigate this issue. The processor implements the Explicitly Parallel
Instruction set Computing (EPIC) technology where instructions are organized into 128-bit VLIW bundles. The Altix
3700 platform uses the NUMAlink3 interconnect, a high-performance custom network with a fat-tree topology that
enables the bisection bandwidth to scale linearly with the number of processors.

Columbia is configured as a cluster of 20 SGI Altix nodes (or boxes), each with 512 processors and 1TB of global
shared-access memory. Of these 20 nodes, 12 are model 3700 and the remaining eight are model 3700BX2. The
BX2 node is essentially a double-density version of the 3700. Each BX2 C-Brick thus contains eight processors,
16GB local memory, and four SHUBs, doubling the processor count in a rack from 32 to 64 and thereby packing
more computational power in the same space. The BX2 C-Bricks are interconnected via NUMAlink4, yielding a peak
bandwidth of 6.4 GB/s that is twice the bandwidth between bricks on a 3700. In addition, five of the Columbia BX2’s
use 1.6 GHz (rather than 1.5 GHz) parts and 9MB L3 caches. Table 1 summarizes the main characteristics of the 3700
and BX2 nodes used in Columbia.

Characteristics 3700 BX2 (Type “a”) BX2 (Type “b”)

Architecture NUMAflex, SSI NUMAflex, SSI NUMAflex, SSI
# Processors 512 512 512
Packaging 32 CPUs/rack 64 CPUs/rack 64 CPUs/rack
Processor Itanium2 Itanium2 Itanium2
Clock 1.5 GHz 1.5 GHz 1.6 GHz
L3 cache 6 MB 6 MB 9 MB
Interconnect NUMAlink3 NUMAlink4 NUMAlink4
Bandwidth 3.2 GB/s 6.4 GB/s 6.4 GB/s
Memory 1 TB 1 TB 1 TB
Th. peak perf. 3.07 Tflop/s 3.07 Tflop/s 3.28 Tflop/s

Table 1. Characteristics of the three types of Altix nodes used in Columbia.

Two communication fabrics connect the 20 Altix systems: an InfiniBand switch22 provides low-latency MPI com-
munication, and a 10-gigabit Ethernet switch provides user access and I/O communications. InfiniBand is a revolution-
ary, state-of-the-art technology that defines very high-speed networks for interconnecting compute and I/O nodes.10 It
is an open industry standard for designing high-performance compute clusters of PCs and SMPs. Its high peak band-
width and comparable minimum latency distinguish it from other competing network technologies such as Quadrics
and Myrinet.14 Four of the 1.6 GHz BX2 nodes are linked with NUMAlink4 technology to allow the global shared-
memory constructs to significantly reduce inter-processor communication latency. This 2,048-processor subsystem
within Columbia provides a 13 Tflop/s peak capability platform.
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A number of programming paradigms are supported on Columbia, including the standard OpenMP and MPI, SGI
SHMEM, and Multi-Level Parallelism (MLP). MPI and SHMEM are provided by SGI’s Message Passing Toolkit
(MPT), while C/C++ and Fortran compilers from Intel support OpenMP. The MLP library was developed by Taft at
NASA Ames.20 Both OpenMP and MLP can take advantage of the globally shared memory within an Altix node. MPI
and SHMEM can be used to communicate between Altix nodes connected with the NUMAlink interconnect; however,
communication over the InfiniBand switch requires the use of MPI. Because of the hardware limitation on the number
of InfiniBand connections through InfiniBand cards installed on each node, the number of per-node MPI processes, k,
is confined by

k ≤
√

Ncards ×Nconnections

n− 1
where n (≥ 2) is the number of Altix nodes involved. Currently on Columbia, Ncards = 8 per node and Nconnections =
64K per card. Thus, a pure MPI code can only fully utilize up to three Altix nodes under the current InfiniBand setup.
A hybrid (e.g. MPI+OpenMP) version of applications would be required for runs using four or more nodes.

III. Benchmarks and Applications

A previous paper6 provides a detailed performance characterization of Columbia’s components and the scalability
up to 2048 processors. Particular attention was paid to the differences between 3700 and BX2 nodes. Another paper15

reports the performance of two high-performance aerodynamic simulation packages on up to 2048 CPUs. In this work,
we explore the feasibility of using the 2048- and 4096-CPU subclusters of the BX2 nodes for capability computing in
aeronautics. We begin by describing the codes and test cases used in our study.

A. NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB) are well-known problems for testing the capabilities of parallel computers and
parallelization tools. They were derived from computational fluid dynamics (CFD) codes and are widely recognized
as a standard indicator of parallel computer performance. The original NPB suite consists of five kernels and three
simulated CFD applications, given as “pencil-and-paper” specifications.3 The kernels mimic the computational core of
five numerical methods, while the three simulated applications reproduce much of the data movement and computation
found in full CFD codes. Reference implementations were subsequently provided as NPB2,4 using MPI as the parallel
programming paradigm, and later expanded to other programming paradigms (such as OpenMP). Recent effort in
NPB development was focused on new benchmarks, including the new multi-zone version, called NPB-MZ.11 While
the original NPB exploits fine-grain parallelism in a single zone, the multi-zone benchmarks stress the need to exploit
multiple levels of parallelism for efficiency and to balance the computational load.

For evaluating the Columbia system, we selected a subset of the benchmarks: three kernels (MG, CG, and FT),
one simulated application (BT), and two multi-zone benchmarks (BT-MZ and SP-MZ).4, 11 These cover five types
of numerical methods found in many scientific applications. Briefly, MG (multi-grid) tests long- and short-distance
communication, CG (conjugate gradient) tests irregular memory access and communication, FT (fast Fourier trans-
form) tests all-to-all communication, BT (block-triadiagonal solver) tests nearest neighbor communication, and BT-
MZ (uneven sized zones) and SP-MZ (even sized zones) test both coarse- and fine-grain parallelism and load bal-
ance. For our experiments, we use both MPI and OpenMP implementations of the four original NPBs and the hybrid
MPI+OpenMP implementation of the NPB-MZ from the latest NPB3.1 distribution.18 A hybrid MPI+MLP version
of the NPB-MZ was developed to exploit parallelism at three levels on multinodes of Columbia: MPI across nodes,
forked processes within an Altix node, and OpenMP at fine grain. To stress the processors, memory, and network of
the Columbia system, we introduced two new classes of problem sizes for the multi-zone benchmarks: Class E (4096
zones, 4224×3456×92 aggregated grid size) and Class F (16384 zones, 12032×8960×250 aggregated grid size).

B. Cart3D: Inviscid Flow Analysis on Adapted Cartesian Meshes

Cart3D is a simulation package targeted at conceptual and preliminary design of aerospace vehicles with complex
geometry. It is in widespread use throughout NASA, the DoD, the US intelligence industry, and within dozens of
companies in the United States. The flow simulation module solves the Euler equations governing inviscid flow of
a compressible fluid. Since these equations neglect the viscous terms present in the full Navier-Stokes equations,
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boundary-layers, wakes, and other viscous phenomena are not present in the simulations. This simplification removes
much of the demand for extremely fine meshing in the wall normal direction that Navier-Stokes solvers must contend
with. As a result, the meshes used in inviscid analysis are generally smaller and simpler to generate than those required
for viscous solvers. This simplification is largely responsible for both the degree of automation available within the
Cart3D package and the speed with which solutions can be obtained. Despite this simplification, inviscid solutions
have a large area of applicability within aerospace vehicle design as there are large classes of problems for which they
produce excellent results. Moreover, when significant viscous effects are present, large numbers of inviscid solutions
can often be corrected using the results of a relatively few full Navier-Stokes simulations.

Cart3D’s solver module uses a second-order cell-centered, finite-volume upwind spatial discretization combined
with a multigrid-accelerated Runge-Kutta scheme for advance to steady-state.1 The package automatically adapts the
embedded-boundary Cartesian grid to capture control surface deflection of a particular geometry. This flexibility is a
key ingredient in automating parameter sweeps over a variety of configurations. Cart3D utilizes several techniques to
enhance its efficiency on distributed parallel machines. It uses multigrid for convergence acceleration and employs a
domain-decomposition strategy for subdividing the global solution of the governing equations among the processors
of a parallel machine.1, 2, 5

To assess performance of Cart3D’s solver module on realistically complex problems, several performance exper-
iments were devised examining scalability for a typical large grid case. The case considered here is based on a full
Space Shuttle Launch Vehicle (SSLV) example. The mesh (shown in Fig. 1) contains approximately 4.7M cells with
14 levels of adaptive subdivision.

Figure 1. Cartesian mesh around full SSLV con-
figuration including orbiter, external tank, solid
rocket boosters, and fore and aft attach hard-
ware. Mesh color indicates 16-way decompo-
sition of 4.7M cells using the SFC partitioner.2

Figure 2. Pressure contours around full SSLV
configuration including orbiter, external tank,
solid rocket boosters, and fore and aft attach
hardware for the benchmarking case described
in the text.

The mesh is illustrated with a single cutting plane through the domain. The grid is painted to indicate its partitioning
into 16 subdomains using the Peano-Hilbert SFC. Partition boundaries in this example were chosen for perfect load-
balancing on homogeneous CPU sets and cut-cells were weighted 2.1 times more heavily than uncut Cartesian hexahe-
dra. The partitions are all predominantly rectangular, which is characteristic of subdomains generated with SFC-based
partitioners. Details of the partitioning strategy used in the Cart3D solver module is described elsewhere.1, 2, 5 The
communication wrapper routines perform explicit data exchanges using direct shared-memory structure copies when
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linked with the OpenMP library, and use explicitly packed communication buffers when built with MPI. Memory re-
quirements for the solver module are approximately 240 words/cell when using 4-level multigrid. Without multigrid,
these requirements drop to about 180 words/cell.

For scalability testing, the mesh density was increased to 25M cells, which is about twice as fine as that shown
in Fig. 1. With the storage requirements outlined above, this example consumes a total of about 22GB of memory.
Cart3D’s solver module solves five equations for each cell in the domain giving this example approximately 125M
degrees-of-freedom. The geometry includes detailed models of the orbiter, solid rocket boosters, external tank, five
engines, and all attach hardware. The geometry also includes modifications made to the external tank geometry as part
of NASA’s Return-to-Flight effort. Figure 2 shows pressure contours of the discrete solution at 2.6 Mach, 2.09 degrees
angle-of-attack, and 0.8 degrees sideslip. The surface triangulation contains about 1.7M elements. An aerodynamic
performance database and virtual-flight trajectories using this configuration with power on was presented in 2004.17

This example was used for several performance experiments on the Columbia system, including comparisons be-
tween OpenMP and MPI, the effects of multigrid on scalability, and comparisons of the NUMAlink and InfiniBand
communication fabrics. Unless otherwise stated, all results presented in this paper used four levels of multigrid.

C. INS3D: Turbopump Flow Simulations

Computations for unsteady flow through a full-scale low-pressure rocket pump are performed utilizing the INS3D
computer code.12 Liquid rocket turbopumps operate under severe conditions and at very high rotational speeds. The
low-pressure-fuel turbopump creates transient flow features such as reverse flows, tip clearance effects, secondary
flows, vortex shedding, junction flows, and cavitation effects. Flow unsteadiness originating from the inducer is
considered to be one of the major contributors to the high frequency cyclic loading that results in cycle fatigue. The
reverse flow originating at the tip of an inducer blade travels upstream and interacts with the bellows cavity. To
resolve the complex geometry in relative motion, an overset grid approach is employed where the problem domain
is decomposed into a number of simple grid components.7 Connectivity between neighboring grids is established
by interpolation at the grid outer boundaries. Addition of new components to the system and simulation of arbitrary
relative motion between multiple bodies are achieved by establishing new connectivity without disturbing the existing
grids.

The computational grid used for the experiments reported in this paper consisted of 66 million grid points and 267
blocks (or zones). Details of the grid system are shown in Fig. 3. Figure 4 displays particle traces colored by axial
velocity entering the low-pressure fuel pump. The blue particles represent regions of positive axial velocity, while the
red particles indicate four back flow regions. The gray particles identify the stagnation regions in the flow.

The INS3D code solves the incompressible Navier-Stokes equations for both steady-state and unsteady flows. The
numerical solution requires special attention in order to satisfy the divergence-free constraint on the velocity field.
The incompressible formulation does not explicitly yield the pressure field from an equation of state or the continuity

Figure 3. Surface grids for the low pres-
sure fuel pump inducer and the flowliner.

Figure 4. Instantaneous snapshot of particle traces col-
ored by axial velocity values.
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equation. One way to avoid the difficulty of the elliptic nature of the equations is to use an artificial compressibil-
ity method that introduces a time-derivative of the pressure term into the continuity equation. This transforms the
elliptic-parabolic partial differential equations into the hyperbolic-parabolic type. To obtain time-accurate solutions,
the equations are iterated to convergence in pseudo-time for each physical time step until the divergence of the velocity
field has been reduced below a specified tolerance value. The total number of sub-iterations required varies depending
on the problem, time step size, and the artificial compressibility parameter. Typically, the number ranges from 10 to
30 sub-iterations. The matrix equation is solved iteratively by using a non-factored Gauss-Seidel type line-relaxation
scheme, which maintains stability and allows a large pseudo-time step to be taken. More detailed information about
the application can be found elsewhere.12, 13

Single-node performance results reported in this paper were obtained for computations carried out using the Multi-
Level Parallelism (MLP) paradigm for shared-memory systems.20 All data communications at the coarsest and finest
levels are accomplished via direct memory referencing instructions. The coarsest level parallelism is supplied by
spawning off independent processes via the standard UNIX fork. A library of routines is used to initiate forks, to
establish shared memory arenas, and to provide synchronization primitives. The boundary data for the overset grid
system is archived in the shared memory arena by each process. Fine grain parallelism is obtained by using OpenMP
compiler directives. In order to run a 66 million grid point case, the code requires 100GB of memory and approxi-
mately 80 microseconds per grid point per iteration.

Performance results on multiple Altix nodes were obtained using the hybrid MPI+OpenMP version of INS3D. The
hybrid code uses an MPI interface for coarse-grain parallelism, and OpenMP directives for fine-grain parallelism.
Implementation of the parallel strategy starts by assembling the grid zones into groups, each of which is mapped onto
an MPI process. Master-worker and point-to-point protocols have been implemented for MPI communications. In the
master-worker paradigm, when overlapping grid communication is performed, each group sends its information to a
master group. Once the master group has received and processed all of the information, the data is sent to the other
groups and computation proceeds. In the point-to-point method, overlapping grid boundary information is updated
via MPI asynchronous calls. Performance results obtained by using both communication protocols are reported in the
multinode results section.

D. OVERFLOW-D: Rotor Vortex Simulations

For solving the compressible Navier-Stokes equations, we selected the NASA production code called OVERFLOW-
D.16 The code uses the same overset grid methodology7 as INS3D to perform high-fidelity viscous simulations around
realistic aerospace configurations. OVERFLOW-D is popular within the aerodynamics community due to its ability
to handle complex designs with multiple geometric components. It is explicitly designed to simplify the modeling of
problems when components are in relative motion. The main computational logic at the top level of the sequential code
consists of a time-loop and a nested grid-loop. Within the grid-loop, solutions to the flow equations are obtained on the
individual grids with imposed boundary conditions. Overlapping boundary points or inter-grid data are updated from
the previous time step using an overset grid interpolation procedure. Upon completion of the grid-loop, the solution is
automatically advanced to the next time step by the time-loop. The code uses finite difference schemes in space, with
a variety of implicit/explicit time stepping.

The hybrid MPI+OpenMP version of OVERFLOW-D takes advantage of the overset grid system, which offers a
natural coarse-grain parallelism.8 A bin-packing algorithm clusters individual grids into groups, each of which is then
assigned to an MPI process. The grouping strategy uses a connectivity test that inspects for an overlap between a pair
of grids before assigning them to the same group, regardless of the size of the boundary data or their connectivity
to other grids. The grid-loop in the parallel implementation is subdivided into two procedures: a group-loop over
groups, and a grid-loop over the grids within each group. Since each MPI process is assigned to only one group, the
group-loop is executed in parallel, with each group performing its own sequential grid-loop. The inter-grid boundary
updates within each group are performed as in the serial case. Inter-group boundary exchanges are achieved via MPI
asynchronous communication calls. OpenMP parallelism is achieved by explicit compiler directives inserted at the
loop level. The logic is the same as in the pure MPI case, only the computationally intensive portion of the code (i.e.
the grid-loop) is multi-threaded via OpenMP.

OVERFLOW-D was originally designed to exploit vector machines. Because Columbia is a cache-based super-
scalar architecture, modifications were necessary to improve performance. The linear solver of the application, called
LU-SGS, was re-implemented using a pipeline algorithm8 to enhance efficiency which is dictated by the type of data
dependencies inherent in the solution algorithm.
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Our experiments reported here involve a Navier-Stokes simulation of vortex dynamics in the complex wake flow
region around hovering rotors. The grid system consisted of 1679 blocks of various sizes, and approximately 75 million
grid points. Figure 5 shows a sectional view of the test application’s overset grid system (slice through the off-body
wake grids surrounding the hub and rotors) while Fig. 6 shows a cut plane through the computed wake system including
vortex sheets as well as a number of individual tip vortices. A complete description of the underlying physics and the
numerical simulations pertinent to this test problem can be found elsewhere.19

Figure 5. A sectional view of the over-
set grid system.

Figure 6. Computed vorticity magnitude contours on a cut-
ting plane located 45o behind the rotor blade.

The memory requirement for OVERFLOW-D is about 40 words per grid point; thus approximately 22GB are
necessary to run the test problem used in this study. Note that this requirement gradually increases with the number
of processors because of grid and solution management overhead. Due to the overset grid structure, disparate sizes
of grid blocks, and grouping strategy for load balancing, no nearest neighbor techniques can be employed. The MPI
communication pattern is all-to-all, i.e. each MPI process communicates with all other processes. The total number of
send/receive buffers exchanged is of the order O(n2), where n is the number of MPI tasks. The communication time
is typically 20% of the execution time, but could vary significantly with the physics of the problem, its domain and
topology, the nature of overlapping blocks, and the number of processors used.

IV. Performance Results

We conducted several experiments using benchmarks and full-scale applications to obtain a detailed performance
characterization of Columbia. Results of these experiments are presented in the following subsections.

A. Single-box Results

Our study started with a characterization of the three types of Altix nodes that make up Columbia—the 3700 and
the two types of BX2. As a shorthand notation, we will call the BX2 with 1.5 GHz CPUs and 6MB caches a “BX2a”,
while the BX2 with faster clock and larger cache is denoted “BX2b”. This part of the study also investigated the
impact of programming paradigm choice on performance.

1. NAS Parallel Benchmarks

Figure 7 shows the per-processor Gflop/s rates reported from runs of both MPI and OpenMP versions of CG, FT, MG,
and BT benchmarks on three types of the Columbia nodes, a horizontal line indicating linear scaling. MPI versions of
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Figure 7. NPB performance comparison on three types of the Columbia nodes.

the benchmarks employ a parallelization strategy of domain decomposition in multiple dimensions to distribute data
locally onto each processor, while OpenMP versions simply exploit loop-level parallelism in a shared-address space.
These approaches are representative of real world applications where a serial program is parallelized using either MPI
or OpenMP.

The effect of doubled network bandwidth and shorter latency of BX2 as compared to 3700 on OpenMP performance
is evident: the four OpenMP benchmarks scaled much better on both types of BX2 than on 3700 when the number of
threads is four or more. With 128 threads, the difference can be as large as 2x for both FT and BT. The bandwidth
effect on MPI performance is less profound until a larger number of processes (≥32) when communication starts to
dominate. Observe that on 256 processors, FT runs about twice as fast on BX2 than on 3700, indicating the importance
of bandwidth for the all-to-all communication used in the benchmark.

A bigger cache (9MB) in the BX2b node produced substantial performance improvement for the MPI codes for
large number of processors (e.g. the peaks at 64 CPUs for MG and BT) when the data can fit into local cache on each
processor. On the other hand, no significant difference for the OpenMP codes is observed, primarily because the cost
of accessing shared data from each OpenMP thread increases substantially as the number of CPUs increases, which
overwhelms any benefit from a larger cache size. In the case of MPI, the falloff from the peak is due to the increased
communication-to-computation ratio (a fixed problem size implies data per processor is decreasing as the number of
processors increases) as occurred earlier in the OpenMP codes. The slightly larger processor speed of BX2b (1.6 GHz)
brings only marginal performance gain, as illustrated from the OpenMP FT and BT results.

Although OpenMP versions of NPB demonstrated better performance on a small number of CPUs, accessing local
data and carefully managing communications in the MPI codes produced significantly better scaling than the OpenMP
codes that use a simple loop parallelization strategy and cannot be easily optimized for accessing shared data.

2. Cart3D

The domain-decomposition parallelization strategy in the Cart3D flow simulation package has previously demon-
strated excellent scalability on large numbers of processors with both MPI and OpenMP communication libraries.5
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This behavior makes it a good candidate for comparison of the performance of BX2a and BX2b nodes using large
numbers of processors on a complete application. Figure 8 shows stacked charts of parallel speedup and execution
timings for Cart3D using both MPI and OpenMP. Line graphs in the figure show parallel speedup on 32–474 CPUs;
the corresponding execution time for five multigrid cycles is shown via bar charts. The scalability data assume perfect
speedup on 32 processors which was the smallest CPU set run.
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Figure 8. Comparison of execution time and paral-
lel speedup of Cart3D solver module on single BX2a
and BX2b nodes of Columbia system using both MPI
and OpenMP communication libraries.

The parallel speedup results show nearly ideal per-
formance for OpenMP and MPI builds on both BX2a
and BX2b nodes. The best among these is the MPI-
build on the BX2b node which achieves a parallel
speedup of 473.8 on 474 CPUs. The OpenMP ver-
sion on the same node is nearly as good with a par-
allel speedup of about 472. Interestingly, the scal-
ability data on BX2a is slightly worse, with both
OpenMP and MPI builds showing parallel speedups
of around 380 on 474 CPUs. This result is counter-
intuitive. Both BX2a and BX2b nodes have the same
routers while the BX2b CPUs have slightly faster
clocks and bigger caches. Single CPU timing tests
with Cart3D’s solver module show 5-6 percent higher
throughput with the BX2b’s CPUs. As a result of
this higher compute speed with essentially the same
interconnect, intuition predicts better scalability on
the BX2a’s, (and better raw timings on the BX2b’s).
Close examination of the parallel speedup data is
required to resolve this apparent disparity between
intuition and the actual performance data. Despite
its higher data consumption rates, scalability is very
nearly perfect on the BX2b system. This implies
that with its lower data consumption rates and iden-
tical interconnect, the code should be able to achieve
speedup results at least as good on the BX2a system.
The fact that it is showing slightly worse performance
is most likely due to a load imbalance on this sys-
tem. Both systems used identical decompositions of
the computational meshes in the various simulations.
However, in Cart3D, good load balancing needs build-time weighting of the work required for the two primary cell
types found in the cut-cell Cartesian meshes. These weights are typically tuned using numerical experiments and
are fixed for a given platform. The executable used to generate the data in Fig. 8 was tuned using a BX2b system,
resulting in a slight load imbalance on large numbers of CPUs on the BX2a. This hypothesis is supported by timings
collected for both the MPI and OpenMP runs that show an increasing performance advantage for BX2b over BX2a
with larger CPU counts. Since the BX2b system is showing essentially ideal scalability, the load imbalance shows
up as decreasing parallel efficiency on the BX2a, making the BX2b look artificially good. Our final observation for
this application is that, even with the higher data consumption rates on the BX2b systems, the BX2 routers provide
sufficient communication bandwidth to support the CPUs without adverse impact on a single Columbia node.

3. INS3D

Two distinct parallel processing paradigms are used in the INS3D code—the Multi-Level Parallel (MLP) and the
MPI+OpenMP hybrid parallel programming models. Both contain coarse- and fine-grain parallelism. Coarse-grain
parallelism is achieved through a UNIX fork in MLP and through explicit message passing in the MPI+OpenMP
code. Fine-grain parallelism is achieved using OpenMP compiler directives in both implementations. Both codes
use a group-based data structure for global solution arrays. The MLP version uses a global shared memory data
structure for overset connectivity arrays, while the MPI+OpenMP code uses local copies of the connectivity arrays
providing a more local data structure. Computations were performed to compare the scalability between the MLP and
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MPI+OpenMP hybrid (using point-to-point communication protocol) versions of the INS3D code on the Columbia
system using the BX2b processors. Initial computations using one group and one thread were used to establish the
baseline runtime for one physical time step, where 720 such time steps are required to complete one inducer rotation.
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Figure 9. INS3D performance on BX2b: program-
ming paradigm comparison.

Figure 9 displays the time per iteration (in min-
utes) versus the number of CPUs and the speedup
factor for both codes. Here, 36 groups have been cho-
sen to maintain good load balance for both versions.
Then the runtime per physical time step is obtained
using various numbers of OpenMP threads (1, 2, 4, 8,
and 14). It includes the I/O time required to write the
time-accurate solution to disk at each time step.

The scalability for a fixed number of both MLP
and MPI groups and varying OpenMP threads is
good, but begins to decay as the number of OpenMP
threads becomes large. Further scaling can be ac-
complished by fixing the number of OpenMP threads
and increasing the number of MLP/MPI groups until
the load balancing begins to fail. Unlike varying the
OpenMP threads which does not affect the conver-
gence rate of INS3D, varying the number of groups
may deteriorate the rate. This will lead to more iterations even though faster runtime per iteration is achieved. Figure 9
shows that the MLP and MPI+OpenMP codes perform almost equivalently for one OpenMP thread, but then as the
number of threads are increased, the MPI+OpenMP version begins to perform slightly better than the MLP imple-
mentation. This can be attributed to having local copies of the connectivity arrays in the MPI+OpenMP hybrid code.
Having the MPI+OpenMP version of INS3D as scalable as the MLP code is promising since this hybrid version is
easily portable to other platforms.

4. Overflow-D
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Figure 10. OVERFLOW-D performance on 3700
and BX2b.

The performance of OVERFLOW-D was also evalu-
ated on Columbia using the 3700 and BX2b proces-
sors. Figure 10 shows total execution times of the
application per time step. A typical production run
requires about 50,000 such time steps. For various
number of processors, we report timings from the best
combination of processes and threads.

Observe that execution time on BX2b is sig-
nificantly smaller compared to 3700 (e.g. more
than a factor of 3x on 508 CPUs). On average,
OVERFLOW-D runs almost 2x faster on the BX2b
than the 3700. In addition, the communication time
(not shown) is also reduced by more than 50%.

The performance scalability on the 3700 is reason-
ably good up to 64 processors, but flattens beyond
256. This is due to the small ratio of grid blocks to
the number of MPI tasks that makes balancing computational workload extremely challenging. With 508 MPI pro-
cesses and only 1679 blocks, it is difficult for any grouping strategy to achieve a proper load balance. Various load
balancing strategies for overset grids are extensively discussed elsewhere.9

Another reason for poor 3700 scalability on large processor counts is insufficient computational work per processor.
This could be verified by examining the ratio of communication to execution time. This ratio is about 0.3 for 256
processors, but increases to more than 0.5 on 508 CPUs. For our problem consisting of 75 million grid points, there
are only about 150,000 grid points per MPI task, which is too little for Columbia’s fast processors compared to the
communication overhead. The problem used here was initially built for production runs on platforms having fewer
processors with smaller caches and slower clock rates.
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Scalability on the BX2b is significantly better. For example, OVERFLOW-D efficiency for 128, 256, and 508
processors is 61%, 37%, and 27% (compared to 26%, 19%, and 7% on the 3700). In spite of the same load imbal-
ance problem, the enhanced bandwidth on the BX2b significantly reduces the communication times. The increased
bandwidth is particularly important at the coarse-grain level of OVERFLOW-D, which has an all-to-all communication
pattern every time step. This is consistent with our experiments conducted on the NPBs and reported in Section IV.A.1.
The reduction in the BX2b computation time can be attributed to its larger L3 cache and maybe its faster CPU speed.

B. Multinode Results

We next reran a subset of our experiments on the 2048-processor BX2b subsystem that is connected with both
NUMAlink4 and InfiniBand switches. We also performed tests on up to eight BX2 Altix nodes. These results are
presented in the following subsections.

1. NAS Parallel Benchmarks

The hybrid MPI+OpenMP codes of BT-MZ and SP-MZ were tested across four Columbia nodes connected with both
the NUMAlink4 network and the InfiniBand switch. We used the Class E problem (4096 zones, 1.3 billion aggregated
grid points) for these tests. The top row of Fig. 11 compares the per-CPU Gflop/s rates obtained from runs using
NUMAlink4 with those from within a single Altix BX2b node. The two sets of data represent runs with one and two
OpenMP threads per MPI process, respectively. For 512 CPUs or less, the NUMAlink4 results are comparable to or
even better than the in-node results. In particular, the performance of 512-processor runs in a single node dropped
by 10–15%, primarily because these runs also used the CPUs that were allocated for systems software (called boot
cpuset), which interfered with our tests. Reducing the number of CPUs to 508 improves the BT-MZ performance
within a node.

Since MPI is used for coarse-grain parallelism among zones for the hybrid implementations, load balancing for
SP-MZ is trivial as long as the number of zones is divisible by the number of MPI processes. The uneven-size zones
in BT-MZ allows more flexible choice of the number of MPI processes; however, as the number of CPUs increases,
OpenMP threads may be required to get better load balance (and therefore better performance). This is evident from the
BT-MZ results in Fig. 11. There is about 11% performance improvement from runs using two OpenMP threads versus
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11 of 17

American Institute of Aeronautics and Astronautics



one (e.g. 256×2 vs. 512×1) for the SP-MZ benchmark. This effect could be attributed to less MPI communication
when two threads are used. The performance drop for SP-MZ at 768 and 1536 processors can be explained by load
imbalance for these CPU counts.

The bottom row of Fig. 11 compares the total Gflop/s rates from runs using NUMAlink4 to those using InfiniBand,
taking the best process-thread combinations. Note a close-to-linear speedup for BT-MZ. The InfiniBand results are
only about 7% worse. On the other hand, we noticed anomalous InfiniBand performance for SP-MZ when a released
SGI MPT runtime library (mpt1.11r) was used. In fact, on 256 processors, the InfiniBand result is 40% slower than
NUMAlink4, but the InfiniBand performance improves as the number of CPUs increases. We used a beta version
of the MPT library (mpt1.12b) and reran some of the data points. As shown in the lower right of Fig. 11, the beta
version of the library produced InfiniBand results that are very close in performance to the NUMAlink4 results.
As it turned out, the InfiniBand MPI performance is sensitive to the settings for a few SGI MPT parameters that
control how MPI accesses its internal message buffers. Specifically, we had to increase MPI_BUFS_PER_HOST and
MPI_BUFS_PER_PROC by a factor of eight from the default values in order to obtain the good performance.

As discussed in Section II, running applications across multiple Altix nodes on Columbia usually requires a hybrid
approach because of the limitation of the InfiniBand switch imposed on the number of MPI processes allowed on each
node. To work around this limitation, one can increase the number of OpenMP threads on each MPI process. However,
increasing the number of OpenMP threads does not necessarily produce the desired parallel efficiency.6 In our tests,
we have adopted a three-level approach, MPI+MLP: using MPI and forked processes for coarse grained parallelism,
and OpenMP for fine grained parallelism. The forked MLP processes communicate through shared memory buffers.
The three-level approach is a natural fit to the Columbia architecture.

A 4032-processor run of the BT-MZ Class E problem was conducted on eight BX2 nodes, five of them being BX2b
and three BX2a. We used a total of 504 MPI processes, each MPI process then forked one additional process, and
each process used four OpenMP threads (as indicated by a notation “504×2×4”). Figure 12a shows computation
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and communication time profiles reported by each MPI process from this run. The communication time includes
barrier synchronizations, thus, a near mirror reflection of the computation time is observed in the plot. An increase in
computation time after MPI rank 315 is due to the processor difference between BX2b (1.6 GHz) and BX2a (1.5 GHz)
that the benchmark implementation did not take into account in its load balance algorithm. Clearly there are a few
unexpected spikes in computation time at distinct MPI ranks (130, 147, 152, and 190–193). These spikes have caused
substantial increase in computation time (as much as 50%) at these points and in communication time at all other MPI
processes. Another run with 2032 CPUs (see Fig. 12b) using four BX2b nodes and IB connection showed a similar
behavior: spikes in computation time appeared at MPI ranks 261, 295, 303, and 381–387, which were correlated to
those in the 4032-CPU run. Further investigations have shown that these spikes correspond to the same set of CPUs in
one of the BX2b boxes and the local memory associated with these CPUs were totally filled by system buffer caches.
This has caused the allocation of remote memory to user jobs when these CPUs were used. Evidently the use of
remote memory significantly increased computation time in the BT-MZ run. After correcting the problem by freeing
system buffer caches, we reran the 2032-CPU case and did not observe any abnormal spikes (see Fig. 12c). The
performance also improved from 1714 Gflop/s to 2336 Gflop/s (36% improvement). An earlier 2032-CPU run using
the NUMAlink4 connection did not have a similar problem (see Fig. 12d. Note: the run used 1016 MPI processes
and two OpenMP threads per process). Unfortunately we did not have chance to confirm the improvement for the
4032-CPU run, which we would expect to be about 26% (or from 3232 Gflop/s to 4072 Gflop/s) when load imbalance
is considered.

2. Cart3D

As discussed earlier, Cart3D’s solver module can be built against either OpenMP or MPI communication libraries. On
the Columbia system, the memory on each 512-CPU node is globally sharable by any process within the node, but
cache coherency is not maintained between nodes. Thus, pure OpenMP codes are restricted to, at most, the 512 CPUs
within a single box. As a result of this restriction, all the multinode examples with Cart3D are run using the MPI
communication back-end, and the numerical experiments focus on the effects of increasing the number of multigrid
levels in the solution algorithm, and comparing the performance of the NUMAlink and Infiniband connection fabrics.
These experiments were carried out on four BX2b Columbia nodes.

0 512 1024 1536 2048
# of CPUs

0

500

1000

1500

2000

Pa
ra

lle
l S

pe
ed

up

Ideal
4 Level Multigrid: BX2b
Single Mesh: BX2b

Cart3D, 25 M cell SSLV Launch Configuration
NUMAlink Interconnect

Figure 13. Parallel speedup of Cart3D solver module
using one and four levels of mesh in the multigrid
hierarchy with NUMAlink interconnect.

Figure 13 examines parallel speedup for the sys-
tem comparing the baseline four-level multigrid solu-
tion algorithm with single grid. This experiment was
carried out exclusively using the NUMAlink inter-
connect, and spanned up to 2016 CPUs on 1–4 BX2b
nodes. Reducing the number of multigrid levels in
the solution algorithm reduces the inter-subdomain
communication much faster than it decreases compu-
tation. The net result is that this mode of operation
de-emphasizes communication (relative to floating-
point performance) in the solution algorithm. Scal-
ability for the single grid scheme is very nearly ideal,
achieving parallel speedups of about 1900 on 2016
CPUs. By contrast, the figure shows that even on
the NUMAlink, communication performance is be-
ginning to affect scalability with four levels of multi-
grid. This is not surprising: with only 25M cells in
the fine mesh ( 12,000 cells/partition on 2016 CPUs),
the coarsest mesh in the multigrid sequence has only
32,000 cells giving only a scant 16 cells per partition
on 2016 CPUs. A slight falloff in the multigrid re-
sults starts appearing around 688 CPUs, but does not
really start to degrade until above 1024 CPUs. Given
this relatively modest decrease in performance, it seems clear that the bandwidth demands of the solver are not greatly
in excess of that delivered by the NUMAlink. With 2016 CPUs and four levels of multigrid, the NUMAlink still posts
parallel speedups of about 1585.
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Our previous work6 included a study of delivered bandwidth and latency for both NUMAlink and InfiniBand for a
variety of different communication patterns. To understand the implications of this study for Cart3D’s solver module,
the baseline four-level multigrid scheme was re-run using the InfiniBand interconnect on the same BX2b nodes as the
preceding experiment. Figure 14 displays these results plotted against those of the NUMAlink interconnect.
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Figure 14. Comparison of parallel speedup and
Tflop/s of Cart3D solver module with four levels of
multigrid using NUMAlink and InfiniBand.

As before, the identical problem was run on 32 to
2016 CPUs using MPI. Note that results with Infini-
Band, however, do not extend beyond 1524 CPUs due
to a limitation on the number of InfiniBand connec-
tions. Results show that between 32 and 496 CPUs,
the cases were run on a single node and thus there
is no difference between the two curves (no node-to-
node communication). Cases with 508–1000 CPUs
were run spanning two nodes of Columbia and some
interesting differences begin to appear. While the
InfiniBand performance consistently lags that of the
NUMAlink, the most striking example is at 508 CPUs
which actually underperforms the single-node case
with 496 CPUs. This is consistent with previous ob-
servations6 which quantify the decrease in delivered
bandwidth for InfiniBand across two nodes. This
work also predicts an increasing penalty when span-
ning four nodes. As expected, cases with 1024–2016
CPUs (run on four nodes) show a further decrease
with respect to those posted by the NUMAlink.

The right axis of the speedup plot in Fig. 14 is
scaled in Tflop/s for the baseline solution algorithm.
The number of floating-point operations in these ex-
periments were obtained by interrogating the Itanium2’s hardware counters using Intel’s “pfmon” interface. Operations
were counted for a single multigrid cycle and then divided by the time per iteration on various numbers of processors
to provide this scale (a single MADD was counted as two operations). Substantial work on optimizing single CPU
performance with this code has resulted in somewhat better than 1.5 Gflop/s on each CPU. When combined with
linear parallel speedup, this produces about 0.75 Tflop/s for the code on 496 processors of a single Columbia node.
Performance of the NUMAlink case with 2016 CPUs is slightly over 2.4 Tflop/s.

3. INS3D

We compare the performance of the INS3D MPI+OpenMP code on multiple BX2b nodes against single node results.
This includes running the MPI+OpenMP version using two different communication paradigms: master-worker and
point-to-point. The runtime per physical time step is recorded using 36 MPI groups and 1, 4, 8, and 14 OpenMP
threads on one, two, and four BX2b nodes. Communication between nodes is achieved using the InfiniBand and
NUMAlink4 interconnects, denoted as IB and XPM respectively.

Figure 15 contains results using the point-to-point communication paradigm. When comparing the performance of
using multiple nodes with that of a single node, we observe that the scalability of the multinode runs with NUMAlink4
is similar to the single node runs (which also use NUMAlink4 internally). However, when using InfiniBand, the
execution time per iteration increases by 10–29% on two and four node runs. The difference between the two- and
four-node runs decreases as the number of CPUs increases.

Figure 16 displays the results using the master-worker communication paradigm. Note that the time per iteration is
much higher using this protocol compared to the point-to-point communication. We also see a significant deterioration
in scalability for both single and multinode runs. With NUMAlink4, we observe a 5–10% increase in runtime per
iteration from one to two nodes and an 8–16% increase using four nodes. This is because the master resides on one
node and all workers on the other nodes must communicate with the master. Alternatively, when using point-to-point
communication, many of the messages remain within the node from which they are sent. In fact, the MPI groups can
be manipulated so that a very small number of messages (as low as one in many cases) must be passed between each
node. Note that this optimization has not been utilized here and will be studied further. An additional 14–27% increase

14 of 17

American Institute of Aeronautics and Astronautics



2

4

8

16

32
Ti

m
e 

pe
r I

te
ra

tio
n 

 (m
in

)

36 72 144 288 504
Number of CPUs

  IB2
  IB4
  XPM2
  XPM4
  in-box

INS3D
MPI+OpenMP
point-to-point

Figure 15. Performance of INS3D across multi-
ple BX2b nodes via NUMAlink4 and InfinBand
(MPI point-to-point communication).

2

4

8

16

32

Ti
m

e 
pe

r I
te

ra
tio

n 
 (m

in
)

36 72 144 288 504
Number of CPUs

  IB2
  IB4
  XPM2
  XPM4
  in-box

INS3D
MPI+OpenMP
master-worker

Figure 16. Performance of INS3D across multi-
ple BX2b nodes via NUMAlink4 and InfinBand
(MPI master-worker communication).

in runtime is observed when using InfiniBand instead of NUMAlink4; a similar increase was observed when using
point-to-point communication as shown in Fig. 15.

4. OVERFLOW-D

Figure 17 displays OVERFLOW-D performance results obtained on multiple BX2b nodes. The total execution times
are reported for the same number of processor counts via both NUMAlink4 and InfiniBand interconnects. The execu-
tion times for NUMAlink4 are generally 5–10% better; however, the reverse appears to be true for the communication
times (not shown). Up until 508 CPUs, we did not observe a significant change in the execution timing for the same
total number of processors distributed across multiple nodes via NUMAlink4 or InfiniBand, in comparison to the cor-
responding data obtained within a single node. The overall performance scalability is rather poor for the problem used
in these experiments, and is adversely affected by the granularity of the grid blocks and increased overhead for large
processor counts. In fact, as seen from Fig. 17, the execution times actually increase beyond 508 CPUs.
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It should be noted that the shared I/O file system
across multiple nodes that was available at the time of
this study was much less efficient than the one used
within a single node. Since the execution time in-
cludes the overhead for some minor I/O activities, al-
beit negligible for a single node, it is negatively af-
fected to some extent for multiple nodes.

For the same total number of processors, the exe-
cution time for OVERFLOW-D across multiple nodes
is less than the corresponding run on a single node
(compare the stacked chart for multinode and the
line plot for single node in Fig. 17). Our measure-
ments indicate that communication times decrease
significantly when using multiple boxes (and compu-
tation times actually increase somewhat). We spec-
ulate that this behavior may be due to the underly-
ing send/receive buffer algorithm implemented in the
MPI software used to handle large number of commu-
nications, such as all-to-all in this case, that perhaps
benefits from the availability of more bandwidth in the multinode system. Bandwidth plays a more crucial role in
the execution time than the latency for the communication pattern in our application. Note that this behavior is not
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observed in the case of the INS3D application which is also based on overset grid methodology. We believe this is
related to the communication patterns employed by OVERFLOW-D and INS3D, i.e. all-to-all versus point-to-point
communication, respectively. In addition, the number of grid blocks used by INS3D for the experiments in this paper
is much less than that used by OVERFLOW-D.

V. Summary and Conclusions

In this paper, we investigated the suitability of the Columbia supercomputer at NASA as a capability computing
platform for aeronautics applications. Our benchmarking experiments demonstrated several features about single-
box SGI Altix performance. First, the presence of the NUMAlink4 interconnect on the BX2 nodes provides a large
performance boost for MPI and OpenMP applications. Furthermore, when the processor speed and cache size are
enhanced (as is the case on those nodes we call BX2b’s), there is another significant improvement in performance.

When multiple Altix nodes are combined into a capability cluster, both NUMALink4 and InfiniBand are capable
of delivering very good performance. There are some caveats, however. For example, in the case of the master-worker
version of INS3D, we observed that contention in the interconnect increased execution time substantially. On the other
hand, the point-to-point version of INS3D scaled very well. Thus, careful attention should be paid to the choice of the
communication strategy. With a suitable selection, we can scale some important applications to 2048 processors, as
the work on Cart3D demonstrates.

In regard to scaling beyond that point, it is particularly encouraging that InfiniBand performed nearly as well as
NUMAlink4 on the 2048-CPU shared-memory subcluster. For jobs using more than 2048 processors, InfiniBand is
a necessity. However, because of the limitations of the InfiniBand hardware, doing so will require that a multilevel
parallel programming paradigm be used. The excellent results from hybrid MPI+OpenMP and MPI+MLP benchmark
runs are therefore very promising.

We also see great promise in the NAS Parallel Benchmark timings obtained on 4096-CPU subcluster. In the future,
we will explore application scaling to that level. We will also investigate the causes of scalability problems that were
observed with OpenMP, and experiment with the SGI SHMEM library.
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